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Abstract

We analyze the stability properties of an approximate algorithm for moving horizon
estimation (MHE). The strategy provides instantaneous state estimates and is thus
suitable for large-scale feedback control. In particular, we study the interplay between
numerical approximation errors and the convergence of the estimator error. In addition,
we establish connections between the numerical properties of the Hessian of the MHE
problem and traditional observability definitions. We demonstrate the developments
through a simulation case study.
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1 Introduction and Basic Notation

In this paper, we consider the problem of state estimation for nonlinear discrete-time systems
of the form

xt+1 = f(xt, ut) + ξt, t ≥ 0 (1a)

yt = h(xt) + ηt, t ≥ 0, (1b)

where xt ∈ X ⊆ ℜnx is the state of the system, ut ∈ U ⊆ ℜnu are the inputs, and
yt ∈ ℜny are the measured outputs. Symbols ξt ∈ Ξ ⊆ ℜnξ and ηt ∈ H ⊆ ℜnη denote
bounded process and measurement noise disturbances, respectively. The nonlinear map-
pings f : ℜnx × ℜnu → nx and h : ℜnx → ℜny represent the state and output models,
respectively.

Moving horizon estimation (MHE) strategies use a moving measurement window,

IT
t = [Iy

t
T
, Iu

t
T ] = [yt−N , ..., yt−1, yt, ut−N , ..., ut−1], t ≥ 0 (2)

to compute estimates x̂t of the true state xt. Here, N is the size of the moving window,
and It ∈ ℜNny+(N−1)nu is the information vector at time t. The MHE formulation used in
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this work has the following form:

min
z0

J(z0, x̄
o
t−N , It) := µ‖z0 − x̄o

t−N‖2 +
N

∑

k=0

‖yt−N+k − h(zk)‖
2 (3a)

s.t. zk+1 = f(zk, ut−N+k), k = 0, ..., N − 1 (3b)

zk ∈ X , k = 0, ..., N, (3c)

where the objective function (3a) incorporates the arrival cost and the least-squares out-
put errors along the horizon, (3b) is the state model, and (3c) are the constraints. The
optimal solution of this nonlinear programming problem (NLP) provides the state tra-
jectory [zo

0, ..., z
o
N ] from which we extract the initial state estimate x̂o

t−N ← zo
0 and, im-

plicitly, the current state x̂o
t ← zo

N . In the following, we will use only the initial state
estimate to refer to the solution of the MHE problem. Accordingly, the estimator error
at the current time t is defined as eo

t−N := x̂o
t−N − xt−N . The optimal cost is denoted

as J(x̂o
t−N , x̄o

t−N , It). The symbol x̄o
t−N denotes the reference or prior value of the initial

state; µ is a regularization parameter fixed by design. At the next time step t + 1, once
we have the new measurements yt+1 and ut, we shift the measurement window forward:
IT
t+1 = [yt−N+1, ..., yt, yt+1, ut−N+1, ..., ut]. In addition, the reference initial state is updated

as x̄o
t−N+1 ← f(x̂o

t−N , ut−N ), and the next MHE problem is solved to optimality. In the
following, we will refer to the above strategy as the optimal MHE algorithm.

One of the main problems associated with MHE is to establish stability conditions for
the estimation error et := x̂t − xt, t ≥ 0. Different stability studies have been reported.
In [1], the authors derive stability conditions for an estimator formulation assuming that
the output errors vanish at the solution. With this, the estimator can be cast as a sys-
tem of nonlinear equations, and stability properties can be established using fixed-point
arguments. The analysis in [2] establishes stability by using Lyapunov arguments for an
optimization-based estimator that penalizes only least-squares output errors. This work
was extended in a comprehensive stability analysis presented in [3]. Here, the authors an-
alyze the MHE problem as a forward dynamic programming approximation of the optimal
batch estimator. Using this connection, they introduce the notion of the arrival cost and
establish stability conditions using Lyapunov arguments. Their MHE strategy uses a more
general least-squares objective than (3a), including prior and noise covariance matrices.
This permits the authors to establish statistical properties of the estimator. In addition,
the strategy computes estimates of the process noise sequences ξt and handles constraints.
The stability analysis in [4] uses the above MHE formulation (3). In this formulation, pro-
cess noise ξt is treated as a non-estimable disturbance. In addition, the arrival cost uses
a fixed prior diagonal matrix of the form µ · Inx , µ ≥ 0. As expected, the stability and
statistical properties of this estimator are less general compared to those in [3]. However,
this formulation permits a transparent analysis of the impact of the system properties on
the stability of the estimator from which much insight can be obtained. Motivated by this,
we use this formulation and associated stability arguments here.

A problem that arises in most practical MHE implementations is that the NLP (3) is
a computationally intensive optimization problem. For instance, when MHE is used for
feedback control, the solution time of the NLP introduces a nonnegligible feedback delay
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that deteriorates closed-loop performance [5]. In this work, we consider an approximate
MHE formulation with minimal on-line computational effort and analyze its stability prop-
erties. The strategy is a simplification of the advanced-step MHE estimator presented in
[6] in which nearly instantaneous approximate estimates are constructed by using reference
solutions computed in background (i.e., between sampling times). We analyze the impact
of numerical approximation errors on the stability properties of the algorithm and contrast
these with those of the optimal MHE algorithm. In addition, we establish connections be-
tween the observability properties of the nonlinear system and the properties of the MHE
problem. We illustrate the developments using a simulation case study.

The paper is structured as follows. In Section 2 we derive the approximate MHE al-
gorithm. In Section 3 we establish system and observability properties. In Section 4 we
derive stability conditions for the optimal and approximate MHE estimators. In Section 5
we present the numerical study. We close the paper with concluding remarks and directions
of future work.

2 Approximate MHE Algorithm

To construct the approximate MHE algorithm, we recognize that, at time step t−1, we can
use the current state estimate x̂ǫ

t−1 and input ut−1 to predict the future state and associate
measurement x̄ǫ

t = f(x̂ǫ
t−1, ut−1) and ȳt = h(x̄ǫ

t), respectively. With these, we can use the
predicted information vector Īt = [Īy

t , Iu
t ]T = [yt−N , ..., yt−1, ȳt, ut−N , ..., ut−1]

T to solve,
between sampling times, the background MHE problem:

min
z0

J(z0, x̄
ǫ
t−N , Īt) := µ‖z0 − x̄ǫ

t−N‖2 + ‖ȳt − h(zN )‖2 +
N−1
∑

k=0

‖yt−N+k − h(zk)‖
2(4a)

s.t. zk+1 = f(zk, ut−N+k), k = 0, ..., N − 1 (4b)

zk ∈ X , k = 0, ..., N. (4c)

Using the solution of this problem x̂o
t−N (Īt), we construct an on-line correction formula of

the form

x̂ǫ
t−N (It) = x̂o

t−N (Īt) + Ko
t

(

It − Īt

)

. (5)

With this, we can compute a fast on-line estimate as soon as the true measurement yt be-
comes available. Here, Ko

t is a gain matrix that can be constructed by using NLP sensitivity
and the Karush-Kuhn-Tucker matrix of the MHE problem evaluated at the solution of the
background MHE problem (see the next section). In [6], it has been shown that this matrix
is a Kalman-like gain matrix. The approximate state generated by the correction step at
time t is denoted as x̂ǫ

t−N (It). This has an associated cost J(x̂ǫ
t−N (It), x̄

ǫ
t−N , It) and error,

ǫt := J(x̂ǫ
t−N (It), x̄

ǫ
t−N , It) − J(x̂o

t−N (It), x̄
o
t−N , It). (6)

The current estimation error is eǫ
t−N := x̂ǫ

t−N − xt−N . At the next time step, the reference
state is updated as x̄ǫ

t−N+1 ← f(x̂ǫ
t−N , ut−N ). In the following, we will refer to this algo-

rithm as the approximate MHE algorithm.
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The approximate MHE strategy can significantly reduce the on-line solution time be-
cause the expensive computational tasks are performed between sampling times while the
correction step (5) can be computed almost instantaneously [7, 6]. However, a problem that
arises in approximate MHE schemes is that the correction step introduces a numerical ap-
proximation error ǫt that is propagated at each time step through the reference initial state.
In the next sections, we investigate under which conditions we can guarantee stability even
in the presence of these numerical errors. In addition, we analyze the interplay between
these errors and the dynamics of the estimation error eǫ

t.

3 Observability and Sensitivity Properties

To start the discussion, we use the following assumptions and definitions.

Assumption 1 (System Properties)

• The sets Ξ, H and U are compact.

• Any initial condition x0 and control sequence ut, t ≥ 0 are such that, for any possible
disturbance sequences ξt, t ≥ 0, and ηt, t ≥ 0, the system trajectory xt, t ≥ 0, lies in
a closed and compact set X .

• The functions f and h are C2 functions with respect to both arguments x ∈ X and
u ∈ U . The associated Lipschitz constants are kf and kh, respectively.

Definition 1 A continuous function ϕ : ℜ → ℜ is a K function if ϕ(0) = 0, ϕ(s) > 0,∀s >
0 and it is strictly increasing.

For the sake of simplicity, we will consider a representation of the MHE problem (4) of the
form

min
z0

J(z0, x̄t−N , It) := µ‖z0 − x̄t−N‖2 + ‖Iy
t − F (z0, I

u
t )‖2. (7)

The nonlinear mapping F : ℜnx ×ℜ(N−1)nu → ℜNny has the structure

F (z0, I
u
t ) :=











h(z0)
h ◦ fut−N (z0)

...
h ◦ fut−1 ◦ ... ◦ fut−N (z0)











. (8)

To simplify the analysis, we will also make the following assumption:

Assumption 2 (Constraints) The constraints zk ∈ X , k = 0, ..., N in (4) can be satisfied
implicitly, and the optimal estimates never lie at the boundary of the set X .

Later we will discuss extensions needed in order to relax this assumption. We emphasize that
formulation (7) is only conceptual. Because of computational efficiency reasons, problem (4)
should be solved in practice. We now impose requirements on the observability properties
of the nonlinear discrete-time system (1) and relate them to the properties of (7).
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Definition 2 (Observability Definition) [8, 3, 4] The system (1) is said to be observable in
N + 1 steps if there exists a K-function ϕ(·) such that

‖F (z0, I
u) − F (z′0, I

u)‖2 ≥ ϕ(‖z0 − z′0‖
2), ∀z0, z

′
0 ∈ X ,∀u ∈ U . (9)

Assumption 3 (Observability Assumption)
System (1) is observable in N + 1 steps ∀z0 ∈ X and ∀u ∈ U .

This assumption implies that ∀ z0, z
′
0 ∈ X and ∀u ∈ U , ∃ δ > 0 such that

‖F (z′0, I
u) − F (z0, I

u)‖2 ≥ δ‖z′0 − z0‖
2. (10)

In other words, Assumption 3 guarantees that different initial states give rise to distinguish-
able output trajectories. This also implies that the system

Iy = F (z0, I
u), ∀z0 ∈ X , ∀u,∈ U (11)

always has a unique solution. An issue related to Definition 2 is that it can be difficult to
verify and quantify in practice (e.g., for large-scale nonlinear systems and in the presence of
constraints). Motivated by this, we seek to relate the observability properties of the system
to the numerical properties of the NLP problem because this can be verified more easily in
practice. Note that uniqueness of (11) is equivalent to guaranteeing that the unregularized
(µ = 0) MHE problem (7) has a unique solution. In optimization literature it is said that
the NLP has a strict isolated minimizer. A strict isolated minimizer satisfies the so-called
strong second-order sufficient conditions (SSOC), which we present here in the context of
problem (7).

Lemma 1 (SSOC Conditions) [9] Let J(z0, x̄, I) be a C2 function w.r.t. z0 in a neigh-
borhood of zo

0. Under Assumption 2, if ϕo
z := ∇zJ(zo

0, x̄, I) = 0 and wTHow > 0 with
Ho := ∇z,zJ(zo

0, x̄, I) hold ∀w, then zo
0 is a strict isolated minimizer.

The requirement of J(z0, x̄, I) being a C2 function follows from Assumption 1. The above
lemma can be modified to account explicitly for active constraints at the solution. In such
a case, the vector w needs to be restricted to the subspace of the variables at the boundary
of X . The analysis of this case would require a detailed structural analysis of the mapping
F (·, ·) and of the set X . Therefore, this analysis is omitted here. A detailed SSOC analysis
in the context of MHE can be found in Chapters 3 and 6 in [10].

The gradient and the Hessian matrix evaluated at the solution zo
0 are given by

∇zJ(zo
0, x̄, I) = 2µ(zo

0 − x̄) − 2
∂F

∂z0

T

(Iy − F (zo
0, I

u)), (12a)

∇z,zJ(zo
0, x̄, I) = 2µInx + 2

∂F

∂z0

T ∂F

∂z0
− 2

∂2F

∂z0
2
(Iy − F (zo

0, I
u)), (12b)

where ∂F
∂z0

and ∂F
∂z0

T ∂F
∂z0

are the so-called observability and Grammian matrices, respectively.
If we apply a second-order Taylor series expansion of the objective function around zo

0
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Figure 1: Sketch of curvature of cost function for observable (λmin > 0) and unobservable
system (λmin = 0).

satisfying SSOC, we have

J(z′0, x̄, I) − J(zo
0, x̄, I) =

1

2
(z′0 − zo

0)
THo(z′0 − zo

0)

≥
1

2
λmin(Ho)‖z′0 − zo

0‖
2, (13)

where λmin(Ho) > 0 if SSOC holds (see Figure 1). From (12a) it is not difficult to see that,
for the special case in which µ = 0 and the residuals Iy − F (zo

0, I
u) vanish at the solution,

solving problem (7) is equivalent to solving (11). The estimation strategy presented in
[1] is based on the solution of this algebraic system. Note also that, in this special case,
expression (13) reduces to (10) with δ = 1

2λmin(Ho). Moreover, the Hessian reduces to

Ho = 2 ∂F
∂z0

T ∂F
∂z0

. Therefore, SSOC implies that the observability matrix is full rank and
that the Grammian is positive definite. This was also noticed in [2] in the context of linear
systems. From this sequence of implications it is clear that the satisfaction of SSOC is a
valid and general observability qualification. Observability properties have been tradition-
ally analyzed a priori by using, for instance, a singular-value-decomposition (SVD) of the
Grammian matrix at nominal state and control values. In nonlinear systems, however, it is
well known that the system properties can change drastically with the nominal values. In
addition, the numerical properties of the Grammian matrix can be related to Definition 2
only if the system model and output mappings are linear. Finally, computing the deriva-
tives of the mapping F (·, ·) and performing the SVD decomposition can become expensive
or cumbersome in large systems. The SSOC property, on the other hand, can be checked
for complex MHE problems through modern NLP solvers and modeling capabilities [10].
This check can be performed a posteriori by solving the estimation problem. This can be
useful, for instance, if the available measurements are noisy or if constraints are present.

Remark: To check for the observability qualification through SSOC we require the reg-
ularization term to be zero (µ = 0). If the system is already observable, in the sense
of Definition 2, setting µ > 0 will introduce a bias in the solution (i.e., this acts as a
Tikhonov regularization) [11]. If the system is not observable, setting µ to a sufficient large
value adds artificial curvature to the cost function, inducing a unique (but biased) solution.
This regularization term can also be added internally by some NLP algorithms (e.g., a la
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Figure 2: Sketch of path of minimizers zo
0(It) and presence of singular point (loss of observ-

ability).

Levenberg-Marquardt) [9] as the search proceeds.

The satisfaction of SSOC also has implications on the sensitivity of the solution to
perturbations on the problem data I around a reference solution zo

0(Ī) [12]. To explore this,
we use the following well-known result, adapted to the context of problem (7).

Theorem 2 (NLP Sensitivity) [13, 14]. If a nominal solution zo
0(Ī) satisfies SSOC, then

the following hold:

• For I in a neighborhood of Ī there exists a unique, continuous and differentiable vector
function zo

0(I) that is a strict isolated minimizer satisfying SSOC.

• The optimal cost is locally Lipschitz in a neighborhood of Ī.

From these results, we can apply the implicit function theorem to (12a) at zo
0(Ī) to obtain

a correction formula (5) with

Ko
t =

∂zo
0

∂I

∣

∣

∣

∣

zo
0
(Ī),x̄,Ī

= Ho−1ϕo
I (14)

and ϕo
I := −∇z,IJ(zo

0(Ī), x̄, Ī). The sensitivity matrix can be bounded as

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂zo
0

∂I

∣

∣

∣

∣

zo
0
(Ī),x̄,Ī

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤
1

λmin(Ho)
‖ϕo

I‖. (15)

If the solution satisfies SSOC (system is observable), the solution is numerically stable to
perturbations on I. This is reflected by a small sensitivity matrix. If, on the other hand,
the Hessian becomes singular (system becomes unobservable), the sensitivity matrix grows
unboundedly. This singularity represents a bifurcation point in the zo

0(I)−I space at which
solutions of the MHE problem move from a set of minimizers to a set of saddle points or
maximizers [15]. This is sketched in Figure 2.

Using the sensitivity results, we can now establish a rigorous bound on the error gener-
ated by the correction step of the approximate MHE algorithm.
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Lemma 3 (Numerical Error Bound) Assume zo
0(Īt) is a solution of (7) satisfying SSOC.

Then, for It in the neighborhood of Īt, ∃ kx, kJ , ǫt ≥ 0, such that

‖x̂ǫ
t−N (It) − x̂o

t−N (It)‖ ≤ kx‖It − Īt‖
2 (16a)

ǫt = J(x̂ǫ
t−N (It), x̄

ǫ
t−N , It) − J(x̂o

t−N (It), x̄
ǫ
t−N , It) ≤ kJ‖It − Īt‖

2. (16b)

Proof: We note that x̂o
t−N (It) = zo

0(It). Bound (16a) follows from Taylor’s theorem [16,
17], while (16b) follows from (16a) and the Lipschitz continuity of the cost, as stated in
Theorem 2. The error ǫt is always nonnegative because, if x̂o

t−N (It) satisfies SSOC, then
J(x̂o

t−N (It), x̄
ǫ
t−N , It) ≤ J(x̂ǫ

t−N (It), x̄
ǫ
t−N , It). ¤

4 Stability Properties

We now establish stability conditions for the estimation error of the approximate MHE
algorithm. We define uniform bounds for the disturbances, the initial estimation error
eo
0 := x̂o

0 − x0 at t = 0, and for the constant δ in the observability condition (10):

rξ := max
ξt∈Ξ

‖ξt‖, rη := max
ηt∈H

‖ηt‖, dx := max
x0,x̂o

0
∈X

‖x̂o
0 − x0‖, δmin := min

δ>0
‖δt‖. (17)

To establish a reference for the stability conditions of the approximate algorithm, we revisit
the stability results of [4] for the optimal MHE algorithm.

Theorem 4 (Stability of Optimal MHE Algorithm) If Assumptions 1 and 3 hold, then the
optimal cost J(x̂o

t−N , x̄o
t−N , Īt) obtained from the solution of (3) can be bounded as

J(x̂o
t−N , x̄o

t−N , It) ≤ µ‖xt−N − x̄o
t−N‖2 + c2

J(x̂o
t−N , x̄o

t−N , It) ≥
1

2
µ‖eo

t−N‖2 +
1

2
ϕ(‖eo

t−N‖2) − µ‖xt−N − x̄o
t−N‖2 − c2.

Furthermore, the estimator error eo
t−N can be bounded as

‖eo
t−N‖2 ≤ ζt−N ,

where ζt−N is generated by the sequence

ζ0 = β0 (19a)

ζt = αζt−1 + β (19b)

α =
4

µ + δmin

(

2µk2
f

)

(19c)

β0 =
4

µ + δmin

(

2µd2
x + c2

)

(19d)

β =
4

µ + δmin

(

2µr2
ξ + c2

)

. (19e)

If µ is selected such that α < 1, then as t → ∞, we have ‖eo
∞‖2 → β

1−α
.

Proof: The complete proof of this theorem has been presented in [4]. A summary is given
in Appendix A. ¤
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Note that the above theorem does not make use of Assumption 2. The theorem states
that, for a suitable choice of µ, the estimation error sequence is convergent. Condition α < 1
becomes easier to satisfy as δmin increases (better observability). For δmin = 0 this condition
can be satisfied only if 8k2

f < 1 (µ cannot be used to control the error). If δmin > −µ, the
estimator error can still be forced to converge (under very restrictive conditions). The error
diverges for δmin ≤ −µ. This clearly illustrates the role of the regularization or arrival
cost term in the cost function. The previous stability result requires the MHE problem to
be solved on-line to optimality. We now establish stability conditions for the approximate
MHE algorithm. In particular, we analyze the propagation of ǫt through the estimator error
sequence.

Theorem 5 (Stability of Approximate MHE Algorithm) If Assumptions 1 and 3, and the
bounds of Lemma 3 hold, then the approximate cost J(x̂ǫ

t−N , x̄ǫ
t−N , Īt) can be bounded as

J(x̂ǫ
t−N , x̄ǫ

t−N , It) ≤ µ‖xt−N − x̄ǫ
t−N‖2 + c2 + ǫt

J(x̂ǫ
t−N , x̄ǫ

t−N , It) ≥
1

2
µ‖eǫ

t−N‖2 +
1

2
ϕ(‖eǫ

t−N‖2) − µ‖xt−N − x̄ǫ
t−N‖2 − c2.

Furthermore, the estimator error eǫ
t−N can be bounded as

‖eǫ
t−N‖2 ≤ ζ̄t−N ,

where ζ̄t−N is generated by the sequence

ζ̄0 = β̄0 (21a)

ζ̄t = ᾱζ̄t−1 + β̄ (21b)

β̄0 = β0 +
4

µ + δmin

(

κ2r
2
ξ + κ3r

2
η

)

(21c)

β̄ = β +
4

µ + δmin

(

κ2r
2
ξ + κ3r

2
η

)

(21d)

ᾱ = α +
4κ1

µ + δmin
(21e)

with κ1, κ2 and κ3 defined in Appendix C. If µ is selected such that ᾱ < 1, then as t → ∞,

we have ‖eǫ
∞‖2 → β̄

1−ᾱ
.

Proof: See Appendix B. ¤

Corollary 6 (Asymptotic Behavior in Absence of Disturbances) If Assumptions 1 and 3,
the bounds of Lemma 3, and rξ = rη = 0 hold, then ‖eo

t−N‖2 and ‖eǫ
t−N‖2 converge expo-

nentially to zero as

‖eo
t−N‖2 ≤ αt−Nβ0

‖eǫ
t−N‖2 ≤

(

α +
4κ1

µ + δmin

)t−N

β0.
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Proof: In the absence of noise disturbances, we have that β̄ = β = 0 and β̄0 = β0. The
result follows. ¤

From Corollary 6 we see that the rate of convergence of the approximate estimator is
4κ1/(µ + δmin) slower than that of the optimal counterpart. An unexpected result from this
analysis is the fact that, even in the absence of noise disturbances, the rate of convergence
of the approximate MHE algorithm is not the same as that of the optimal counterpart. The
reason is that the estimation error ‖eǫ

t−N‖2 is always propagated to the predicted output
ȳt+1 generating an error ǫt+1 at the next step. For instance, if we have a large initial
estimation error (bad initial reference state x̄0), then ‖eǫ

0‖
2 will be large and will tend to

give larger approximation errors during the first time steps. On the other hand, this also
implies that, as soon as ‖eǫ

t−N‖2 = 0, the predicted and true output measurements coincide
and ǫt+1 = 0 for all subsequent t.

In the presence of noise disturbances, from (19) and (21) it is clear that additional errors
are introduced by the correction step. From Appendix C we see that the additional errors
are always multiplied by kJ . That is, as expected, the stability properties of the estimators
coincide if ǫt = 0. This happens, for instance, if the model and output mappings are linear,
since the MHE problem reduces to a quadratic programming problem and the correction
step is exact.

The bounds of Lemma 3 are related to the observability properties of the system and
on the numerical stability properties of the MHE problem. Therefore, these bounds are
problem dependent. However, from (15) and (5) it is clear that ǫt tends to zero as λmin(Ho)
shifts away from zero. This means that, as the numerical stability properties of the problem
improve, the correction step (5) will not generate appreciable changes in the state estimate.
This desired effect can be influenced by increasing the horizon length or by increasing the
regularization term µ, since this tends to increase the curvature of the solution, which is
reflected in λmin(Ho). This behavior can also be appreciated from term 4κ1/(µ + δmin),
which tends to decrease as δmin and µ increase.

5 Numerical Case Study

In this section, we illustrate the effect of numerical errors on the performance of the ap-
proximate MHE estimator and discuss some of the the stability properties developed in
the previous sections. We consider a simulated MHE scenario on the nonlinear continuous
stirred tank reactor [18]:

dx1

dτ
=

x1(τ) − 1

θ
+ k0 · x

1(τ) · exp

[

−Ea

x2(τ)

]

(22a)

dx2

dτ
=

x2(τ) − x2
f

θ
− k0 · x

1(τ) · exp

[

−Ea

x2(τ)

]

+ α · u(τ) · (x2(τ) − x2
cw). (22b)

The system involves two states x = [x1, x2] corresponding to the concentration and tem-
perature, respectively, and one control u corresponding to the cooling water flowrate. The
continuous-time model is transformed into a discrete-time form through an implicit Eu-
ler discretization scheme. The temperature is used as the measured output (yt = x2

t ) to
infer the concentration. The model parameters are x2

cw = 0.38, x2
f = 0.395, Ea = 5,
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Figure 3: Convergence of approximate and optimal MHE estimator in the absence of dis-
turbances.

α = 1.95 × 104, and k0 = 300. We use batch data generated from a simulated closed-loop
feedback control scenario. The simulated states are corrupted with different levels of Gaus-
sian noise with variance σ2 measured as a percentage relative to the nominal temperature
value. The corrupted temperature values are used to study the effect of noise disturbances
ηt. We use x̄0 = [0.15 0.15] as the initial reference state, a regularization penalty µ = 30,
and an estimation horizon N = 5.

In Figure 3 we compare the performance of both the optimal and approximate MHE
algorithms in the absence of disturbances (σ2 = 0%). In the top graph, we present the
approximate cost J ǫ

t := J(x̂ǫ
t−N , x̄ǫ

t−N , It) and its corresponding upper and lower bounds.
These bounds correspond to the right-hand sides of equations (32) and (33), respectively.
The estimator recovers from the bad initial reference (bound dx in Theorem 5), and the
estimator error converges to the origin in about 30 time steps (reflected as a zero cost).
In the middle graph, we contrast the trajectories of the inferred state for the optimal and
approximate estimators, while in the bottom graph we contrast the predicted ȳt and true
measurements yt. These generate the perturbation ‖yt − ȳt‖

2 in (16) for the approximate
estimator. As can be seen, even if the initial prior is far away from the true state, both
estimators exhibit the same performance. This implies that the errors ǫt are negligible.

In Figure 4 we compare the performance of the estimators in the presence of noise
disturbances with σ = 2.5%. In the top graph, we present the approximate cost and cor-
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Figure 4: Convergence of approximate and optimal MHE estimator in the presence of
disturbances.

responding upper and lower bounds in which we can see that the estimator converges to a
neighborhood of the origin. In the middle graph, we see that the trajectories of the inferred
state for both estimators are still very close to each other. In the bottom graph, we present
the relatively large perturbations ‖yt − ȳt‖

2 reflected by larger deviations between the pre-
dicted and true temperatures compared to those observed in the noise-free scenario.

In the top graph of Figure 5 we present the total sum of the approximation errors
ǫsum =

∑

t ǫt over the whole horizon for scenarios with increasing levels of noise σ2 =
[0%, 2.5%, 5%, 7.5%, 10%]. As expected, the approximation errors tend to increase with the
noise level. Nevertheless, their overall magnitude remains small O(10−5). This is mainly
due to the good observability properties of the system. To illustrate this, in the bottom
graph we present trends of λmin(Ho) for MHE problems with different horizons and two
different regularization terms. As can be seen, for the µ = 0 case, the system is observable
even for very short horizons (λmin(Ho) > 0). This value also increases with the horizon
length, as expected. Note also that, by setting µ = 1, the eigenvalues are shifted away
from zero. However, the relationship is not one-to-one because of the nonlinearity of the
system. From bound (15), it can be seen that this tends to decrease the sensitivity of the
state estimates and thus reduce the approximation errors.
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6 Conclusions and Future Work

In this work, we have studied the stability properties of an approximate algorithm for
moving horizon estimation (MHE). The algorithm is particularly suitable for large-scale
systems because it can significantly reduce the on-line solution time by constructing fast
approximations using reference solutions computed in between sampling times. The stability
analysis reveals that the estimation error converges at a similar rate compared to that of an
optimal MHE counterpart. In addition, the observability properties of the nonlinear system
have a strong impact on the convergence of the estimator error. This insight has been used
to derive guidelines able to reduce the impact of numerical errors.

As part of future work, we are interested in considering the more general MHE formula-
tion presented in [3]. We recognize that, for strong disturbances or ill-conditioned problems,
the corrected state x̂ǫ

t(It) in (5) can become a worse approximation than the uncorrected
state xo(Īt) if error bounds of Lemma 3 do not hold. We are thus interested in developing
strategies able to preserve stability.
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A Proof of Theorem 4

To construct the estimator error sequence eo
t−N , we obtain lower and upper bounds for

the cost function J(x̂o
t−N , x̄o

t−N , It). An upper bound can be obtained by noticing that,
since x̂o

t−N is optimal, it gives a smaller cost than the true state xt−N (because of the
regularization term). With this,

J(x̂o
t−N , x̄o

t−N , It) ≤ J(xt−N , x̄o
t−N , It)

= µ‖xt−N − x̄o
t−N‖ + ‖Iy

t − F (xt−N , Iu
t )‖2. (23)

As shown in equation (32) in [4], the second term on the right-hand side can be bounded
by using the disturbance bounds rξ and rη. These terms can be lumped into a constant c2

to give

J(x̂o
t−N , x̄o

t−N , It) ≤ µ‖xt−N − x̄o
t−N‖ + c2. (24)

To construct a lower bound, we start from the optimal cost,

J(x̂o
t−N , x̄o

t−N , It) = µ‖x̂o
t−N − x̄o

t−N‖ + ‖Iy
t − F (x̂o

t−N , Iu
t )‖2. (25)

The second term can be bounded from

‖F (xt−N , Iu
t ) − F (x̂o

t−N , Iu
t )‖2 = ‖

(

Iy
t − F (x̂o

t−N , Iu
t )

)

+ (F (xt−N , Iu
t ) − Iy

t ) ‖2

≤ 2‖Iy
t − F (x̂o

t−N , Iu
t )‖2 + 2c2 (26)

so that

‖Iy
t − F (x̂o

t−N , Iu
t )‖2 ≥

1

2
‖F (xt−N , Iu

t ) − F (x̂o
t−N , Iu

t )‖2 − c2

≥
1

2
ϕ(‖xt−N − x̂o

t−N‖2) − c2. (27)

The last inequality arises from the Observability Assumption 3. We now bound the first
term in (25) from

µ‖xt−N − x̂o
t−N‖ ≤ 2µ‖xt−N − x̄o

t−N‖ + 2µ‖x̂o
t−N − x̄o

t−N‖

µ‖x̂o
t−N − x̄o

t−N‖ ≥
1

2
µ‖xt−N − x̂o

t−N‖ − µ‖xt−N − x̄o
t−N‖. (28)

Merging terms and using (10) with δmin, we obtain

J(x̂o
t−N , x̄o

t−N , It) ≥
1

2
µ‖eo

t−N‖ +
1

2
δmin‖e

o
t−N‖2 − µ‖xt−N − x̄o

t−N‖ − c2. (29)

Combining bounds (25) and (29) yields

1

2
µ‖eo

t−N‖ +
1

2
δmin‖e

o
t−N‖2 ≤ 2µ‖xt−N − x̄o

t−N‖ + 2c2

‖eo
t−N‖2 ≤

4µ

µ + δmin
‖xt−N − x̄o

t−N‖2 +
4

µ + δmin
c2. (30)
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The proof is completed by relating the current estimation error to the previous estimation
error as

‖xt−N − x̄o
t−N‖2 = ‖f(xt−N−1, ut−N−1) + ξt−N−1 − f(x̂o

t−N−1, ut−N−1)‖
2

≤ 2k2
f‖xt−N−1 − x̂o

t−N−1‖
2 + 2‖ξt−N−1‖

2

= 2k2
f‖e

o
t−N−1‖

2 + 2‖ξt−N−1‖
2. (31)

The convergent sequence follows from (30) and (31). The proof is complete. ¤

B Appendix - Proof of Theorem 5

A lower bound for the approximate cost J(x̂ǫ
t−N , x̄ǫ

t−N , It) can be obtained as in Appendix
A to give

J(x̂ǫ
t−N , x̄ǫ

t−N , It) ≥
1

2
µ‖eǫ

t−N‖2 +
1

2
δmin(‖eǫ

t−N‖2) − µ‖xt−N − x̄ǫ
t−N‖2 − c2. (32)

As an upper bound we consider

J(x̂ǫ
t−N , x̄ǫ

t−N , It) = J(x̂o
t−N , x̄ǫ

t−N , It) + ǫt. (33)

With this,

J(x̂ǫ
t−N , x̄ǫ

t−N , It) ≤ µ‖xt−N − x̄ǫ
t−N‖2 + c2 + ǫt. (34)

Combining the upper and lower bounds, we have

µ‖xt−N − x̄ǫ
t−N‖2 + c2 + ǫt ≥

1

2
µ‖eǫ

t−N‖2 +
1

2
δmin(‖eǫ

t−N‖2) − µ‖xt−N − x̄ǫ
t−N‖2 − c2

‖eǫ
t−N‖2 ≤

4µ

µ + δmin
‖xt−N − x̄ǫ

t−N‖2 +
4

µ + δmin
c2 +

2

µ + δmin
ǫt.

(35)

The first term on the right-hand side is bounded as

‖xt−N − x̄ǫ
t−N‖2 ≤ 2k2

f‖e
ǫ
t−N−1‖ + 2r2

ξ . (36)

To bound ǫt, we first note that the only element changing from Īt is the predicted measure-
ment ȳt which is computed from extrapolation of the previous state estimate x̂ǫ

t−1. With
this, (16) reduces to

ǫt ≤ kJ‖ȳt − yt‖
2. (37)

The error between measurements is bounded as

‖ȳt − yt‖
2 = ‖h(f(x̂ǫ

t−1, ut−1)) − h(f(xt−1, ut−1) + ξt−1) + ηt−1‖
2

≤ 2k2
h

(

2k2
f‖e

ǫ
t−1‖

2 + 2‖ξt−1‖
)

+ 2‖ηt−1‖
2

≤ 4k2
hk2

f‖e
ǫ
t−1‖

2 + 4k2
hr2

ξ + 2r2
η, (38)
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where eǫ
t−1 is the estimation error of the state x̂ǫ

t−1 obtained from propagation of the initial
state x̂ǫ

t−N−1. As a consequence, this error can be related to the the desired estimation
error eǫ

t−N−1 through backpropagation:

‖eǫ
t−1‖

2 = ‖x̂ǫ
t−1 − xt−1‖

2

= ‖f(x̂ǫ
t−2, ut−2) − f(xt−2, ut−2) − ξt−2‖

2

≤ 2k2
f‖e

ǫ
t−2‖

2 + 2‖ξt−2‖
2 (39)

≤ 2k2
f‖f(x̂ǫ

t−3, ut−3) − f(xt−3, ut−3) + ξt−3‖
2 + 2‖ξt−2‖

2

...

≤ (2k2
f )N‖eǫ

t−N−1‖
2 +

N−1
∑

k=0

(2k2
f )

k
r2
ξ

= (2k2
f )

N
‖eǫ

t−N−1‖
2 +

(2k2
f )N − 1

2k2
f − 1

r2
ξ . (40)

With this,

‖ȳt − yt‖
2 ≤ 4k2

hk2
f‖e

ǫ
t−1‖

2 + 4k2
hr2

ξ + 2r2
η

≤ 4k2
hk2

f

(

(2k2
f )

N
‖eǫ

t−N−1‖
2 +

(2k2
f )N − 1

2k2
f − 1

r2
ξ

)

+ 4k2
hr2

ξ + 2r2
η

≤ 2k2
h(2k2

f )
N+1

‖eǫ
t−N−1‖

2 + 2k2
h

(

2 +
(2k2

f )N+1 − 1

2k2
f − 1

)

r2
ξ + 2r2

η. (41)

We have thus obtained the required bound for ǫt:

ǫt ≤ 2κ1‖e
ǫ
t−N−1‖

2 + 2κ2r
2
ξ + 2κ3r

2
η. (42)

Substituting (42) and (36) in (35), we have

‖eǫ
t−N‖2 ≤

4µ

µ + δmin

(

2k2
f‖e

ǫ
t−N−1‖

2 + 2r2
ξ

)

+
4

µ + δmin
c2

+
2

µ + δmin

(

2κ1‖e
ǫ
t−N−1‖

2 + 2κ2r
2
ξ + 2κ3r

2
η

)

=

(

8k2
fµ

µ + δmin
+

4κ1

µ + δmin

)

‖eǫ
t−N−1‖

2 +
4

µ + δmin

(

2µr2
ξ + c2

)

+
4

µ + δmin

(

κ2r
2
ξ + κ3r

2
η

)

, (43)
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where κ1, κ2, and κ3 are defined in Appendix C. The error sequence follows:

‖eǫ
t−N‖2 ≤ ζ̄t−N

ζ̄0 = β̄0

ζ̄t = ᾱζ̄t−1 + β̄

β̄0 = β0 +
4

µ + δmin

(

κ2r
2
ξ + κ3r

2
η

)

β̄ = β +
4

µ + δmin

(

κ2r
2
ξ + κ3r

2
η

)

ᾱ = α +
4κ1

µ + δmin
.

The proof is complete. ¤

C Constants

κ1 = kJk2
h(2k2

f )
N+1

κ2 = kJk2
h

(

2 +
(2k2

f )N+1 − 1

2k2
f − 1

)

κ3 = kJ .
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